skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Blum, Laura_N"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Many Archaea produce membrane‐spanning lipids that enable life in extreme environments. These isoprenoid glycerol dibiphytanyl glycerol tetraethers (GDGTs) may contain up to eight cyclopentyl and one cyclohexyl ring, where higher degrees of cyclization are associated with more acidic, hotter or energy‐limited conditions. Recently, the genes encoding GDGT ring synthases,grsAB, were identified in two Sulfolobaceae; however, the distribution and abundance ofgrshomologs across environments inhabited by these and related organisms remain a mystery. To address this, we examined the distribution ofgrshomologs in relation to environmental temperature and pH, from thermal springs across Earth, where sequences derive from metagenomes, metatranscriptomes, single‐cell and cultivar genomes. The abundance ofgrshomologs shows a strong negative correlation to pH, but a weak positive correlation to temperature. Archaeal genomes and metagenome‐assembled genomes (MAGs) that carry two or moregrscopies are more abundant in low pH springs. We also findgrsin 12 archaeal classes, with the most representatives in Thermoproteia, followed by MAGs of the uncultured Korarchaeia, Bathyarchaeia and Hadarchaeia, while several Nitrososphaeria encodes >3 copies. Our findings highlight the key role ofgrs‐catalysed lipid cyclization in archaeal diversification across hot and acidic environments. 
    more » « less